Preliminary communication

A PLATINA-ALLENYL LIGAND COORDINATED TO A TRIOSMIUM CLUSTER: X-RAY STRUCTURE OF THE ACETYLIDE COMPLEX Os ${ }_{3} \operatorname{Pt}(\mu$ -$\mathrm{H})\left(\mu_{4}-\eta^{2}-\mathrm{C} \equiv \mathbf{C P h}\right)(\mathrm{CO})_{10}\left(\mathrm{PCy}_{3}\right)$

PAUL EWING and LOUIS J. FARRUGIA*

Department of Chemistry, The University, Glasgow G12 8QQ (Great Britan)
(Received October 16th, 1986)

Summary

The spiked triangular triosmium-platinum cluster complex $\mathrm{Os}_{3} \operatorname{Pt}(\mu-\mathrm{H})\left(\mu_{4}-\eta^{2}-\right.$ $\mathrm{C} \equiv \mathrm{CPh})(\mathrm{CO})_{10}\left(\mathrm{PCy}_{3}\right)$ has been synthesised by treatment of the unsaturated $\mathrm{Os}_{3} \mathrm{Pt}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{10}\left(\mathrm{PCy}_{3}\right)$ with $\mathrm{LiC} \equiv \mathrm{CPh}$ followed by protonation. Crystallographic analysis reveals an unusual twisted configuration of the $\mu_{4}-\eta^{2}-\mathrm{C} \equiv \mathrm{CPh}$ ligand about the triosmium framework such that the complex may be regarded as a platina-allenyl moiety coordinated to an $\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{9}$ unit.

The $58 \mathrm{e}^{-}$unsaturated cluster compounds $\mathrm{Os}_{3} \mathrm{Pt}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{10}\left(\mathrm{PR}_{3}\right)$ (1) [1] have a tetrahedral platinum-triosmium framework, and have been shown to be highly reactive towards 2 electron donors L giving the $60 \mathrm{e}^{-}$adducts $\mathrm{Os}_{3} \operatorname{Pt}(\mu$ $\mathrm{H})_{2}(\mathrm{CO})_{10}\left(\mathrm{PR}_{3}\right)(\mathrm{L})$ [2]. These adducts either have a butterfly metal arrangement for $\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{R}=\mathrm{Ph}$ [2a] and $\mathrm{L}=\mathrm{CO}, \mathrm{R}=\mathrm{Cy}\left(\mathrm{Cy}=\operatorname{cyclo}-\mathrm{C}_{6} \mathrm{H}_{11}\right)$ [2b], or are tetrahedral $\mathrm{L}=2 \mathrm{H}, \mathrm{R}=\mathrm{Cy}$, and $\mathrm{L}=\mathrm{CH}_{2}, \mathrm{R}=\mathrm{Cy}[2 \mathrm{~b}]$. In view of current interest in multisite cluster bound acetylene derived ligands [3] as models (both from a chemical reactivity [4] and theoretical perspective [5]) of adsorbed alkynes on transition metal surfaces [6], we were interested in synthesising derivatives of $\mathbf{1}$ with the $2 \mathrm{e}^{-}$donor acetylide anion $\mathrm{RC} \equiv \mathrm{C}^{-}$. Treatment of dark green $\mathbf{1 a}(\mathrm{R}=\mathrm{Cy})$ with $\mathrm{PhC} \equiv \mathrm{C}^{-} \mathrm{Li}^{+}$at $-20^{\circ} \mathrm{C}$ rapidly gave an orange solution. The nature of the initial (presumably anionic) products are still under investigation, but in the hope of obtaining neutral species the reaction mixture was treated with excess $\mathrm{CF}_{3} \mathrm{COOH}$. A yellow compound characterised as $\mathrm{Os}_{3} \mathrm{Pt}(\mu-\mathrm{H})\left(\mu_{4}-\eta^{2} \mathrm{C} \equiv \mathrm{CPh}\right)(\mathrm{CO})_{10}\left(\mathrm{PCy}_{3}\right)$ (2) was isolated in ca. 10% yield. Spectroscopic data for $2 ; \nu(\mathrm{CO})$ cyclohexane, 2086 m , 2062s, 2042vs, 2022m, 1993m, 1964w cm ${ }^{-1}$: ${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, \delta 7.39-7.03\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$, $5 \mathrm{H}), 1.75-0.88\left(\mathrm{C}_{6} H_{11}, 33 \mathrm{H}\right),-20.42(\mathrm{Os}(\mu-H) \mathrm{Os}, 1 \mathrm{H})$. An X-ray diffraction study

Fig. 1. Molecular structure of $\mathrm{Os}_{3} \mathrm{Pt}(\mu-\mathrm{H})\left(\mu_{4}-\eta^{2} \mathrm{C} \equiv \mathrm{CPh}\right)(\mathrm{CO})_{10}\left(\mathrm{PCy}_{3}\right)(2)$. Important bond length and angies: $\mathrm{Os}(1)-\mathrm{Os}(2) 2.845(1), \mathrm{Os}(1)-\mathrm{Os}(3) 2.824(1)$. $\mathrm{Os}(2) \mathrm{Os}(3) 2838(1) . \mathrm{Os}(1) \mathrm{P}_{\mathrm{t}} 2712(1),(11) \mathrm{P}_{\mathrm{t}}$ 2.00(1), $\mathrm{C}(11)-\mathrm{Os}(1) 2.15(1), \mathrm{C}(11)-\mathrm{Os}(2) 2.59(1) . \mathrm{C}(11)-\mathrm{Os}(3) 240(1) . \mathrm{C}(11)-\mathrm{C}(12) 1$ (441), C(12)-Os(2)

 $1244(8)^{\circ}$. Cyclohexyl groups on P onitted for clarity, only contact carbons shown
was carried out to determine the detailed structure *
A view of 2 is shown in Fig. 1. The metal skeleton consists of an equilateral triosmium triangle, with a platinum atom coordinated in an axial position on $\mathrm{Os}(1)$ (angle between $\mathrm{Pt}-\mathrm{Os}(1)$ and Os_{3} triangle 101.7°) resulting in a spiked triangular

[^0]arrangement. The 62 electron count for 2 (assuming the $\mu_{4}-\eta^{2} \mathrm{C} \equiv \mathrm{CPh}$ group is a $5 \mathrm{e}^{-}$ donor) is consistent with a $16 \mathrm{e}^{-} \mathrm{Pt}$ atom, and a similar spiked geometry is observed in the complex $\mathrm{Os}_{3} \operatorname{Pt}(\mu-\mathrm{H})_{2}\left(\mu_{4}-\mathrm{C}\right)(\mathrm{CO})_{10}\left(\mathrm{PCy}_{3}\right)$ [7] also having 62 valence electrons.

Although the overall coordination mode of the $\mu_{4}-\eta^{2} \mathrm{C} \equiv \mathrm{CPh}$ group in 2 is somewhat similar to that recently reported for the same ligand in $\mathrm{Fe}_{2} \mathrm{Ni}_{2}(\mu$ -$\left.\mathrm{PPh}_{2}\right)\left(\mu_{4}-\eta^{2} \mathrm{C} \equiv \mathrm{CPh}\right)(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ (3) [8], there are some notable differences. In particular the $\mathrm{C}(11)-\mathrm{C}(12)$ vector is not perpendicular to the $\mathrm{Os}(2)-\mathrm{Os}(3)$ axis but is twisted by 10.0°, so that the $\mathrm{C}(11)-\mathrm{Os}(2)$ distance of $2.59(1) \AA$ is ca. $0.20 \AA$ longer than the $\mathrm{C}(11)-\mathrm{Os}(3)$ separation, and may be considered non-bonding (I). In cluster compounds containing the $\mu_{3}-\mathrm{C} \equiv \mathrm{CR}$ ligand a symmetric $\eta^{2}(\perp)$ bonding mode (II) is usual [3a,9]. The $\mu_{4}-\eta^{2}-\mathrm{C} \equiv \mathrm{CPh}$ group in complex 3 is bonded in a $\mu_{3}-\eta^{2}(\perp)$
I

II

III

fashion to the $\mathrm{Fe}_{2} \mathrm{Ni}$ triangle (angle between $\mathrm{C}-\mathrm{C}$ axis and $\mathrm{Ni}(2)-\mathrm{Fe}(2)$ vector 89.5° [8]). By contrast in the recently reported complex $\mathrm{Ru}_{5}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu_{4}-\eta^{2}\right.$ $\mathrm{C} \equiv \mathrm{CPh})(\mathrm{CO})_{13}$ the acetylide ligand may be described as $\mu_{3}-\eta^{2}(\|)$ bonded to the Ru_{3} triangle, since the intervector angle between $\mathrm{C}(14)-\mathrm{C}(15)$ and $\mathrm{Ru}(1)-\mathrm{Ru}(3)$ is 1.0° [10]. The geometry observed in 2 is intermediate with an intervector angle between $\mathrm{C}(11)-\mathrm{C}(12)$ and $\mathrm{Os}(2)-\mathrm{Os}(1)$ of 20.5°

Since the fragment PtL_{2} is isolobal with $\mathrm{CH}_{2}[11]$, it may be profitable to view the $\mathrm{Pt}_{2} \mathrm{C}=\mathrm{CPh}$ unit as a platina-allenyl moiety. In the complexes, $\mathrm{R} \mathrm{u}_{3}(\mu-\mathrm{H})\left\{\mu_{3}-\right.$ $\left.\eta^{3}-\mathrm{CH}(\mathrm{Me})=\mathrm{C}=\mathrm{C}(\mathrm{Et})\right\}(\mathrm{CO})_{10}$ (4) [12], and $\mathrm{Ru}_{3}\left(\mu-\mathrm{PPh}_{2}\right): \mu_{3}-\eta-\mathrm{CH}_{2}=\mathrm{C}=$ $\left.\mathrm{C}\left(\operatorname{Pr}^{i}\right)\right\}(\mathrm{CO})_{8}$ [4a] the central carbon atom of the $\mu_{3}-\eta^{3}$-allenyl ligand is only bonded to two metal atoms in the triangle (III), as appears to be the case for C(11) in complex 2.

The $\mathrm{C}(11)-\mathrm{C}(12)$ distance of $1.34(1) \AA$ is slightly longer than the corresponding distance in $3,(1.313(8) \AA)[8]$. and somewhat shorter than observed in $4(1.365(8) \AA)$ [12]. though due to high esd's little significance can be attributed to these values. The Pt-C(11) distance of $2.00(1) \AA$ is similar to observed Pt-carbene separations [13] and is consistent with the above analogy.

Acknowledgements. We are grateful to the SERC for a research studentship (to P.E.) and Johnson Matthey for a loan of Pt salts. We also thank K.W. Muir for helpful advice to P.E.

References

1 L.J. Farrugia. J.A.K. Howard. P. Mitrprachachon, FG. A. Stone and P. Woodward. I. Chem Soc. Dalton Trans., (1981) 155
2 (a) L.J. Farrugia, J.A.K. Howard, P. Mitrprachachon. F.G.A. Stone and P. Woodward. 3 Chom. Sos. Dalton Trans, (1981) 162: (b) L I. Farrugia, M. Green, DR. Hankev, V. Mumay A Gr Orpen and F.(A.A. Stone, J. Chem. Soc Daton Trans. (1985) 177

3 (a) A.I. Carty, Pure Appl Chen, 54 (1982) 113; (b) E. Sappa, A Tiripichio 3nd P. Braunstein. Chem. Rev., 83 (1983) 203.
4 (a) D. Nuccianom, N.J. Taylor and A.J. Canty, Oganometallics, ? (1984) |17. (1) A D ©aus. JR. Shapley and S.R. Wilson, J. Am. Chem. Soc., 103 (1981) 7387
5 (a) G. Granozzi, E. Tondello, M. Casarin. S. Aime and D. Osella, Organometallics, 2 (1983) 430; (b) G. Granozzi, E. Tondello, R. Bertoncello, S. Aime and D. Osella, Inorg. Chem. 22 (1983) 744

6 See for example J.E. Parmeter. M. M Hills and W.H. Weinberg. I. Am. Chem. Soc.. IOx (1086) 3563 and refs therein.
7 L.J. Farrugia, A.D. Miles and F.G.A Stone, J.C.S. Datton Trans, (1985) 243°
8 C. Weatherell. N.J. Taylor. A.J. Carty, E. Sappa and A Tiripicchon I. Oreanomel Chem, 291 (1985) C 9
9 (a) C. Barner-Thorsen, K.I. Hardcastle, E. Rosenberg, J. Siegel. A.M.M. Iandfredi, A. Tiripichio and M Tiripicchio-Camellini, Inorg Chem., 20 (1981) 4306 ; (b) M. Cutt. G. Gervasio and S A Mason, J Chem. Soc. Dalton Trans, (1977) 2260; (c) Z. Dawoodi. M. Mays and K. Mentok, bbed. |iب84) 1769
10 K. Kwek. N.J. Taylor and A.). Curtv, J. Chem Soc Chem. Conmun. (1486) 29.
11 R. Hofmann, Angew. Chemie. Intern. Ed. Eng., 21 (1982) 711
12 G. Gervasio, D. Osella and M. Valle, Inorg. Chem, 15 (1976) 1221.
13 F.K. Hartley in G. Wilkinson, I G.A. Stone and EW Abel (Eds) Comprehensive Organometallic Chemistry, Pergamon Press. 1982, Wol. 6, p. 47

[^0]: * Costal data: $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{O}_{10} \mathrm{Os}_{3} \mathrm{PPt}_{1}, M=1428.37$. triclinic. space group $P \mathrm{i}\left(\mathrm{C}_{1}^{-1}\right.$ No. 2). a $9.816(1)$, , $11.414(2), c 19.971(4) \mathrm{A}, \alpha 76.14(2), \beta 77.83(1), \gamma 87.68(1)^{\circ}, Z=2,(-2123.5(6) \mathrm{A}, ~ D, 24 \mathrm{~g}$ $\mathrm{cm}^{* 3}, F(000)=1312, \mu\left(\mathrm{Mo}-K_{\alpha}\right) 123.6 \mathrm{~cm}$. The structure solution (Patterson. Fourer methods) and refinement (full matrix least squares, all non hydrogen atoms apart from deordered soltent molecule were anisotropic) was based on 5444 independent observed ($)>30(I)$ (10861 measurei) ;eflecthoms (Enraf-Nonius CAD4F diffractometer, max $\theta 25^{\circ}$). Finai R and $R_{\text {w }}$ valucs are 0.031 and 0.042

 Full listings of atomic coordinates, thermal parameters, bond lengths and angles for this work are available on request from the Director of the Cambridge Crystallographic Date Cume Umverste Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW. Any request shoud be acompanied by the full literature citation for ths commonicaton. Tables of structure focos are ar aboble from the authors on request.

